Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.053
Filtrar
1.
Future Microbiol ; 19: 377-384, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38305237

RESUMO

Background: The present study aims to determine the presence of Yersinia spp., Yersinia pestis, Yersinia enterocolitica pathogen, Listeria monocytogenes, Salmonella spp., Shigella spp., Francisella tularensis and Borrelia spp. in brown rats of Tehran, Iran. Methods: PCR was used to detect various bacteria in 100 brown rats, Also, ELISA was used to detect antibodies against the F. tularensis and Borrelia spp. Results: A total of 16% and 13% of fecal samples were positive for Yersinia spp. and Y. enterocolitica pathogen. ELISA results were negative for F. tularensis and Borrelia. No specific antibodies (IgG) were against these bacteria. Conclusion: According to the results of our analysis, rats are significant transmitters and carriers of a variety of illnesses that can spread to both people and other animals.


Assuntos
Listeria monocytogenes , Shigella , Yersinia enterocolitica , Humanos , Animais , Ratos , Yersinia enterocolitica/genética , Irã (Geográfico)/epidemiologia , Salmonella
2.
Mol Microbiol ; 121(2): 304-323, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38178634

RESUMO

In animal pathogens, assembly of the type III secretion system injectisome requires the presence of so-called pilotins, small lipoproteins that assist the formation of the secretin ring in the outer membrane. Using a combination of functional assays, interaction studies, proteomics, and live-cell microscopy, we determined the contribution of the pilotin to the assembly, function, and substrate selectivity of the T3SS and identified potential new downstream roles of pilotin proteins. In absence of its pilotin SctG, Yersinia enterocolitica forms few, largely polar injectisome sorting platforms and needles. Accordingly, most export apparatus subcomplexes are mobile in these strains, suggesting the absence of fully assembled injectisomes. Remarkably, while absence of the pilotin all but prevents export of early T3SS substrates, such as the needle subunits, it has little effect on secretion of late T3SS substrates, including the virulence effectors. We found that although pilotins interact with other injectisome components such as the secretin in the outer membrane, they mostly localize in transient mobile clusters in the bacterial membrane. Together, these findings provide a new view on the role of pilotins in the assembly and function of type III secretion injectisomes.


Assuntos
Sistemas de Secreção Tipo III , Yersinia enterocolitica , Animais , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Secretina/metabolismo , Especificidade por Substrato , Yersinia enterocolitica/genética , Ligação Proteica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
3.
Int J Food Microbiol ; 412: 110554, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38176093

RESUMO

Yersinia enterocolitica is an underreported cause of foodborne gastroenteritis. Little is known of the diversity of Y. enterocolitica isolated from food and which food commodities contribute to human disease. In this study, Y. enterocolitica was isolated from 37/50 raw chicken, 8/10 pork, 8/10 salmon and 1/10 leafy green samples collected at retail in the UK. Up to 10 presumptive Y. enterocolitica isolates per positive sample underwent whole genome sequencing (WGS) and were compared with publicly available genomes. In total, 207 Y. enterocolitica isolates were analyzed and belonged to 38 sequence types (STs). Up to five STs of Y. enterocolitica were isolated from individual food samples and isolates belonging to the same sample and ST differed by 0-74 single nucleotide polymorphisms (SNPs). Biotype was predicted for 205 (99 %) genomes that all belonged to biotype 1A, previously described as non-pathogenic. However, around half (51 %) of food samples contained isolates belonging to the same ST as previously isolated from UK human cases. The closest human-derived isolates shared between 17 and 7978 single nucleotide polymorphisms (SNPs) with the food isolates. Extensive food surveillance is required to determine what food sources are responsible for Y. enterocolitica infections and to re-examine the role of biotype 1A as a human pathogen.


Assuntos
Yersiniose , Yersinia enterocolitica , Humanos , Yersinia enterocolitica/genética , Cadeia Alimentar , Microbiologia de Alimentos , Alimentos , Polimorfismo de Nucleotídeo Único , Yersiniose/veterinária , Yersiniose/epidemiologia
4.
Nat Microbiol ; 9(1): 185-199, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38172622

RESUMO

Bacteria use type III secretion injectisomes to inject effector proteins into eukaryotic target cells. Recruitment of effectors to the machinery and the resulting export hierarchy involve the sorting platform. These conserved proteins form pod structures at the cytosolic interface of the injectisome but are also mobile in the cytosol. Photoactivated localization microscopy in Yersinia enterocolitica revealed a direct interaction of the sorting platform proteins SctQ and SctL with effectors in the cytosol of live bacteria. These proteins form larger cytosolic protein complexes involving the ATPase SctN and the membrane connector SctK. The mobility and composition of these mobile pod structures are modulated in the presence of effectors and their chaperones, and upon initiation of secretion, which also increases the number of injectisomes from ~5 to ~18 per bacterium. Our quantitative data support an effector shuttling mechanism, in which sorting platform proteins bind to effectors in the cytosol and deliver the cargo to the export gate at the membrane-bound injectisome.


Assuntos
Sistemas de Secreção Tipo III , Yersinia enterocolitica , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Yersinia enterocolitica/genética , Yersinia enterocolitica/metabolismo , Citosol/metabolismo , Transporte Proteico , Microscopia de Fluorescência
5.
Ann Ist Super Sanita ; 59(4): 280-285, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38088395

RESUMO

INTRODUCTION: Yersinia enterocolitica (Ye) species is divided into 6 biotypes (BT), 1A, 1B, 2, 3, 4, 5 classified based on biochemical reactions and about 70 serotypes, classified based on the structure of the lipopolysaccharide O-antigen. The BT1A is considered non-pathogenic, while the BT 1B-5 are considered pathogenic. METHODS: Evaluate the distribution of eleven chromosomal and plasmid virulence genes, ail, ystA, ystB, myfA, hreP, fes, fepD, ymoA, sat, virF and yadA, in 87 Ye strains isolated from food, animals and humans, using two SYBR Green real-time PCR platforms. RESULTS: The main results showed the presence of the ail and ystA genes in all the pathogenic bioserotypes analyzed. The ystB, on the other hand, was identified in all non-pathogenic strains biotype 1A. The target fes, fepD, sat and hreP were found in both pathogenic biotypes and in BT1A strains. The myfA gene was found in all pathogenic biotype and in some Ye BT1A strains. The virF and yadA plasmid genes were mainly detected in bioserotype 4/O:3 and 2/O:9, while ymoA was identified in all strains. CONCLUSIONS: The two molecular platforms could be used to better define some specific molecular targets for the characterization and rapid detection of Ye in different sources which important implications for food safety and animal and human health.


Assuntos
Yersinia enterocolitica , Animais , Humanos , Virulência/genética , Yersinia enterocolitica/genética , Reação em Cadeia da Polimerase em Tempo Real
6.
Viruses ; 15(10)2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37896796

RESUMO

Telomere phages are a small group of temperate phages, whose prophages replicate as a linear plasmid with covalently closed ends. They have been isolated from some Enterobacteriaceae and from bacterial species living in aquatic environments. Phage PY54 was the first Yersinia (Y.) enterocolitica telomere phage isolated from a nonpathogenic O:5 strain, but recently a second telomeric Yersinia phage (vB_YenS_P840) was isolated from a tonsil of a wild boar in Germany. Both PY54 and vB_YenS_P840 (P840) have a siphoviridal morphology and a similar genome organization including the primary immunity region immB and telomere resolution site telRL. However, whereas PY54 only possesses one prophage repressor for the lysogenic cycle, vB_YenS_P840 encodes two. The telRL region of this phage was shown to be processed by the PY54 protelomerase under in vivo conditions, but unlike with PY54, a flanking inverted repeat was not required for processing. A further substantial difference between the phages is their host specificity. While PY54 infects Y. enterocolitica strains belonging to the serotypes O:5 and O:5,27, vB_YenS_P840 exclusively lyses O:3 strains. As the tail fiber and tail fiber assembly proteins of the phages differ significantly, we introduced the corresponding genes of vB_YenS_P840 by transposon mutagenesis into the PY54 genome and isolated several mutants that were able to infect both serotypes, O:5,27 and O:3.


Assuntos
Bacteriófagos , Yersinia enterocolitica , Bacteriófagos/genética , Yersinia enterocolitica/genética , Prófagos/genética , Lisogenia , Telômero
7.
Appl Microbiol Biotechnol ; 107(23): 7165-7180, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37728625

RESUMO

The fast envelope stress responses play a key role in the transmission and pathogenesis of Yersinia enterocolitica, one of the most common foodborne pathogens. Our previous study showed that deletion of the waaF gene, essential for the biosynthesis of lipopolysaccharide (LPS) core polysaccharides, led to the formation of a truncated LPS structure and induced cell envelope stress. This envelope stress may disturb the intracellular signal transduction, thereby affecting the physiological functions of Y. enterocolitica. In this study, truncated LPS caused by waaF deletion was used as a model of envelope stress in Y. enterocolitica. We investigated the mechanisms of envelope stress responses and the cellular functions affected by truncated LPS. Transcriptome analysis and phenotypic validation showed that LPS truncation reduced flagellar assembly, bacterial chemotaxis, and inositol phosphate metabolism, presenting lower pathogenicity and viability both in vivo and in vitro environments. Further 4D label-free phosphorylation analysis confirmed that truncated LPS perturbed multiple intracellular signal transduction pathways. Specifically, a comprehensive discussion was conducted on the mechanisms by which chemotactic signal transduction and Rcs system contribute to the inhibition of chemotaxis. Finally, the pathogenicity of Y. enterocolitica with truncated LPS was evaluated in vitro using IPEC-J2 cells as models, and it was found that truncated LPS exhibited reduced adhesion, invasion, and toxicity of Y. enterocolitica to IPEC-J2 cells. Our research provides an understanding of LPS in the regulation of Y. enterocolitica viability and pathogenicity and, thus, opening new avenues to develop novel food safety strategies or drugs to prevent and control Y. enterocolitica infections. KEY POINTS: • Truncated LPS reduces flagellar assembly, chemotaxis, and inositol phosphate metabolism in Y. enterocolitica. • Truncated LPS reduces adhesion, invasion, and toxicity of Y. enterocolitica to IPEC-J2 cells. • Truncated LPS regulates intracellular signal transduction of Y. enterocolitica.


Assuntos
Yersiniose , Yersinia enterocolitica , Humanos , Yersinia enterocolitica/genética , Yersinia enterocolitica/metabolismo , Lipopolissacarídeos/metabolismo , Virulência , Perfilação da Expressão Gênica , Fosfatos de Inositol/metabolismo , Yersiniose/microbiologia
8.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37569327

RESUMO

DksA is a proteobacterial regulator that binds directly to the secondary channel of RNA polymerase with (p)ppGpp and is responsible for various bacterial physiological activities. While (p)ppGpp is known to be involved in the regulation and response of fatty acid metabolism pathways in many foodborne pathogens, the role of DksA in this process has yet to be clarified. This study aimed to characterize the function of DksA on fatty acid metabolism and cell membrane structure in Yersinia enterocolitica. Therefore, comparison analysis of gene expression, growth conditions, and membrane permeabilization among the wide-type (WT), DksA-deficient mutant (YEND), and the complemented strain was carried out. It confirmed that deletion of DksA led to a more than four-fold decrease in the expression of fatty acid degradation genes, including fadADEIJ. Additionally, YEND exhibited a smaller growth gap compared to the WT strain at low temperatures, indicating that DksA is not required for the growth of Y. enterocolitica in cold environments. Given that polymyxin B is a cationic antimicrobial peptide that targets the cell membrane, the roles of DksA under polymyxin B exposure were also characterized. It was found that DksA positively regulates the integrity of the inner and outer membranes of Y. enterocolitica under polymyxin B, preventing the leakage of intracellular nucleic acids and proteins and ultimately reducing the sensitivity of Y. enterocolitica to polymyxin B. Taken together, this study provides insights into the functions of DksA and paves the way for novel fungicide development.


Assuntos
Proteínas de Escherichia coli , Yersinia enterocolitica , Polimixina B/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Yersinia enterocolitica/genética , Yersinia enterocolitica/metabolismo , Guanosina Pentafosfato/metabolismo , Membrana Celular/metabolismo , Ácidos Graxos , Regulação Bacteriana da Expressão Gênica , Proteínas de Escherichia coli/metabolismo
9.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446335

RESUMO

Iron is both essential for and potentially toxic to bacteria, so the precise maintenance of iron homeostasis is necessary for their survival. Our previous study indicated that in the human enteropathogen Yersinia enterocolitica, the regulator OmpR directly controls the transcription of the fur, fecA and fepA genes, encoding the ferric uptake repressor and two transporters of ferric siderophores, respectively. This study was undertaken to determine the significance of the RNA chaperone Hfq and the small RNAs OmrA and RyhB1 in the post-transcriptional control of the expression of these OmpR targets. We show that Hfq silences fur, fecA and fepA expression post-transcriptionally and negatively affects the production of FLAG-tagged Fur, FecA and FepA proteins. In addition, we found that the fur gene is under the negative control of the sRNA RyhB1, while fecA and fepA are negatively regulated by the sRNA OmrA. Finally, our data revealed that the role of OmrA results from a complex interplay of transcriptional and post-transcriptional effects in the feedback circuit between the regulator OmpR and the sRNA OmrA. Thus, the expression of fur, fecA and fepA is subject to complex transcriptional and post-transcriptional regulation in order to maintain iron homeostasis in Y. enterocolitica.


Assuntos
Pequeno RNA não Traduzido , Yersinia enterocolitica , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Yersinia enterocolitica/genética , Yersinia enterocolitica/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Ferro/metabolismo , Homeostase/genética , Regulação Bacteriana da Expressão Gênica
10.
J Microbiol Methods ; 211: 106779, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37406739

RESUMO

This study aimed to develop multiplex real-time PCR methods using SYBR Green and TaqMan probes for rapid and sensitive diagnosis, differentiating three pathogenic Yersinia groups such as highly pathogenic Y. enterocolitica, low pathogenic Y. enterocolitica, and Y. pseudotuberculosis. Specific primer and probe combinations for differentiating three pathogenic Yersinia groups were designed from three chromosomally encoded genes (ail, fyuA, and inv). Twenty-six stains of pathogenic Yersinia species including 6 strains of low pathogenic Y. enterocolitica serotypes, 7 strains of highly pathogenic Y. enterocolitica serotypes, and 13 strains of pathogenic Y. pseudotuberculosis were used for specificity testing. Specific patterns of real-time amplification signals distinguished three pathogenic Yersinia groups. A detection limit of approximately 101 colony forming units (CFU) /reaction of genomic DNA was determined based on plate counts. Furthermore, the multiplex real-time PCR methods also detected Y. enterocolitica O:8 from the DNA extracted from spiked rabbit blood samples and potentially infected wild rodent fecal samples. These results demonstrated that the multiplex real-time PCR methods developed in this study are useful for rapid detection and differentiation of three pathogenic Yersinia groups. Therefore, these methods provide a new monitoring and detection capability to understand the epidemiology of pathogenic Yersinia and to diagnose three pathogenic Yersinia groups.


Assuntos
Yersinia enterocolitica , Infecções por Yersinia pseudotuberculosis , Yersinia pseudotuberculosis , Animais , Coelhos , Yersinia pseudotuberculosis/genética , Yersinia enterocolitica/genética , Reação em Cadeia da Polimerase em Tempo Real , Yersinia/genética
11.
Appl Environ Microbiol ; 89(6): e0003623, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37184385

RESUMO

The insecticidal toxin complex (Tc) proteins are produced by several insect-associated bacteria, including Yersinia enterocolitica strain W22703, which oscillates between two distinct pathogenicity phases in invertebrates and humans. The mechanism by which this high-molecular-weight toxin is released into the extracellular surrounding, however, has not been deciphered. In this study, we investigated the regulation and functionality of a phage-related holin/endolysin (HE) cassette located within the insecticidal pathogenicity island Tc-PAIYe of W22703. Using the Galleria mellonella infection model and luciferase reporter fusions, we revealed that quorum sensing contributes to the insecticidal activity of W22703 upon influencing the transcription of tcaR2, which encodes an activator of the tc and HE genes. In contrast, a lack of the Yersinia modulator, YmoA, stimulated HE gene transcription, and mutant W22703 ΔymoA exhibited a stronger toxicity toward insect larvae than did W22703. A luciferase reporter fusion demonstrated transcriptional activation of the HE cassette in vivo, and a significantly larger extracellular amount of subunit TcaA was found in W22703 ΔymoA relative to its ΔHE mutant. Using competitive growth assays, we demonstrated that at least in vitro, the TcaA release upon HE activity is not mediated by cell lysis of a significant part of the population. Oral infection of Caenorhabditis elegans with a HE deletion mutant attenuated the nematocidal activity of the wild type, similar to the case with a mutant lacking a Tc subunit. We conclude that the dual holin/endolysin cassette of yersiniae is a novel example of a phage-related function adapted for the release of a bacterial toxin. IMPORTANCE Members of the genus Yersinia cause gastroenteritis in humans but also exhibit toxicity toward invertebrates. A virulence factor required for this environmental life cycle stage is the multisubunit toxin complex (Tc), which is distinct from the insecticidal toxin of Bacillus thuringiensis and has the potential to be used in pest control. The mechanism by which this high-molecular-weight Tc is secreted from bacterial cells has not been uncovered. Here, we show that a highly conserved phage-related holin/endolysin pair, which is encoded by the genes holY and elyY located between the Tc subunit genes, is essential for the insecticidal activity of Y. enterocolitica and that its activation increases the amount of Tc subunits in the supernatant. Thus, the dual holY-elyY cassette of Y. enterocolitica constitutes a new example for a type 10 secretion system to release bacterial toxins.


Assuntos
Toxinas Bacterianas , Inseticidas , Mariposas , Yersinia enterocolitica , Animais , Humanos , Yersinia enterocolitica/genética , Caenorhabditis elegans/metabolismo , Mariposas/microbiologia , Toxinas Bacterianas/metabolismo , Insetos , Inseticidas/metabolismo , Luciferases , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
12.
Infect Immun ; 91(7): e0015723, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37255474

RESUMO

Yersinia enterocolitica (Ye) is one of the major causes of foodborne zoonosis. The BT4/O:3 bioserotype is most commonly isolated in human infections. Pigs are considered the main reservoir of Ye, and hence, understanding the dynamics of infection by this pathogen at the individual and group levels is crucial. In the present study, an experimental model was validated in Large White pigs infected with a BT4/O:3 strain. This study showed that Ye contamination in pigs may occur via the introduction of the bacteria not only by mouth but also by snout, with a colonization process consisting of three periods corresponding to three contamination statuses of pigs: P1, corresponding to the 24 h following ingestion or inhalation of Ye with the appearance of bacteria in tonsils or in feces; P2, from 2 days postinoculation (dpi), corresponding to expansion of Ye and colonization of the digestive system and extraintestinal organs associated with an IgG serological response; and P3, after 21 dpi, corresponding to regression of colonization with intermittent Ye detection in tonsils and feces. Although the inoculated strain persisted up to 56 dpi in all pigs, genetic variations with the loss of the gene yadA (a gene involved in human infection) and the emergence of two new multilocus variable-number tandem-repeat analysis (MLVA) profiles were observed in 33% of the 30 isolates studied. This experimental infection model of pigs by Ye provides new insights into the colonization steps in pigs in terms of bacterial distribution over time and bacterial genetic stability.


Assuntos
Yersiniose , Yersinia enterocolitica , Suínos , Animais , Humanos , Yersinia enterocolitica/genética , Virulência , Yersiniose/veterinária , Yersiniose/microbiologia , Marcadores Genéticos , Boca
13.
Infect Dis Poverty ; 12(1): 41, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085902

RESUMO

BACKGROUND: Yersinia enterocolitica has been sporadically recovered from animals, foods, and human clinical samples in various regions of Ningxia, China. However, the ecological and molecular characteristics of Y. enterocolitica, as well as public health concerns about infection in the Ningxia Hui Autonomous Region, remain unclear. This study aims to analyze the ecological and molecular epidemiological characteristics of Y. enterocolitis in order to inform the public health intervention strategies for the contains of related diseases. METHODS: A total of 270 samples were collected for isolation [animals (n = 208), food (n = 49), and patients (n = 13)], then suspect colonies were isolated and identified by the API20E biochemical identification system, serological tests, biotyping tests, and 16S rRNA-PCR. Then, we used an ecological epidemiological approach combined with machine learning algorithms (general linear model, random forest model, and eXtreme Gradient Boosting) to explore the associations between ecological factors and the pathogenicity of Y. enterocolitis. Furthermore, average nucleotide identity (ANI) estimation, single nucleotide polymorphism (SNP), and core gene multilocus sequence typing (cgMLST) were applied to characterize the molecular profile of isolates based on whole genome sequencing. The statistical test used single-factor analysis, Chi-square tests, t-tests/ANOVA-tests, Wilcoxon rank-sum tests, and Kruskal-Wallis tests. RESULTS: A total of 270 isolates of Yersinia were identified from poultry and livestock (n = 191), food (n = 49), diarrhoea patients (n = 13), rats (n = 15), and hamsters (n = 2). The detection rates of samples from different hosts were statistically different (χ2 = 22.636, P < 0.001). According to the relatedness clustering results, 270 isolates were divided into 12 species, and Y. enterocolitica (n = 187) is a predominated species. Pathogenic isolates made up 52.4% (98/187), while non-pathogenic isolates made up 47.6% (89/187). Temperature and precipitation were strongly associated with the pathogenicity of the isolates (P < 0.001). The random forest (RF) prediction model showed the best performance. The prediction result shows a high risk of pathogenicity Y. enterocolitica was located in the northern, northwestern, and southern of the Ningxia Hui Autonomous Region. The Y. enterocolitica isolates were classified into 54 sequence types (STs) and 125 cgMLST types (CTs), with 4/O:3 being the dominant bioserotype in Ningxia. The dominant STs and dominant CTs of pathogenic isolates in Ningxia were ST429 and HC100_2571, respectively. CONCLUSIONS: The data indicated geographical variations in the distribution of STs and CTs of Y. enterocolitica isolates in Ningxia. Our work offered the first evidence that the pathogenicity of isolates was directly related to fluctuations in temperature and precipitation of the environment. CgMLST typing strategies showed that the isolates were transmitted to the population via pigs and food. Therefore, strengthening health surveillance on pig farms in high-risk areas and focusing on testing food of pig origin are optional strategies to prevent disease outbreaks.


Assuntos
Yersiniose , Yersinia enterocolitica , Suínos , Animais , Humanos , Ratos , Yersinia enterocolitica/genética , Yersiniose/epidemiologia , Yersiniose/veterinária , Saúde Pública , Epidemiologia Molecular , RNA Ribossômico 16S/genética
14.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37108773

RESUMO

The stringent response is a rapid response system that is ubiquitous in bacteria, allowing them to sense changes in the external environment and undergo extensive physiological transformations. However, the regulators (p)ppGpp and DksA have extensive and complex regulatory patterns. Our previous studies demonstrated that (p)ppGpp and DksA in Yersinia enterocolitica positively co-regulated motility, antibiotic resistance, and environmental tolerance but had opposite roles in biofilm formation. To reveal the cellular functions regulated by (p)ppGpp and DksA comprehensively, the gene expression profiles of wild-type, ΔrelA, ΔrelAΔspoT, and ΔdksAΔrelAΔspoT strains were compared using RNA-Seq. Results showed that (p)ppGpp and DksA repressed the expression of ribosomal synthesis genes and enhanced the expression of genes involved in intracellular energy and material metabolism, amino acid transport and synthesis, flagella formation, and the phosphate transfer system. Additionally, (p)ppGpp and DksA inhibited amino acid utilization (such as arginine and cystine) and chemotaxis in Y. enterocolitica. Overall, the results of this study unraveled the link between (p)ppGpp and DksA in the metabolic networks, amino acid utilization, and chemotaxis in Y. enterocolitica and enhanced the understanding of stringent responses in Enterobacteriaceae.


Assuntos
Proteínas de Escherichia coli , Yersinia enterocolitica , Guanosina Pentafosfato/metabolismo , Yersinia enterocolitica/genética , Yersinia enterocolitica/metabolismo , Transcriptoma , Quimiotaxia/genética , Aminoácidos/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Escherichia coli/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
15.
Microbiol Spectr ; 10(6): e0174422, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36354362

RESUMO

The membrane-embedded injectisome, the structural component of the virulence-associated type III secretion system (T3SS), is used by Gram-negative bacterial pathogens to inject species-specific effector proteins into eukaryotic host cells. The cytosolic injectisome proteins are required for export of effectors and display both stationary, injectisome-bound populations and freely diffusing cytosolic populations. How the cytosolic injectisome proteins interact with each other in the cytosol and associate with membrane-embedded injectisomes remains unclear. Here, we utilized three-dimensional (3D) single-molecule tracking to resolve distinct cytosolic complexes of injectisome proteins in living Yersinia enterocolitica cells. Tracking of the enhanced yellow fluorescent protein (eYFP)-labeled ATPase YeSctN and its regulator, YeSctL, revealed that these proteins form a cytosolic complex with each other and then further with YeSctQ. YeSctNL and YeSctNLQ complexes can be observed both in wild-type cells and in ΔsctD mutants, which cannot assemble injectisomes. In ΔsctQ mutants, the relative abundance of the YeSctNL complex is considerably increased. These data indicate that distinct cytosolic complexes of injectisome proteins can form prior to injectisome binding, which has important implications for how injectisomes are functionally regulated. IMPORTANCE Injectisomes are membrane-embedded, multiprotein assemblies used by bacterial pathogens to inject virulent effector proteins into eukaryotic host cells. Protein secretion is regulated by cytosolic proteins that dynamically bind and unbind at injectisomes. However, how these regulatory proteins interact with each other remains unknown. By measuring the diffusion rates of single molecules in living cells, we show that cytosolic injectisome proteins form distinct oligomeric complexes with each other prior to binding to injectisomes. We additionally identify the molecular compositions of these complexes and quantify their relative abundances. Quantifying to what extent cytosolic proteins exist as part of larger complexes in living cells has important implications for deciphering the complexity of biomolecular mechanisms. The results and methods reported here are thus relevant for advancing our understanding of how injectisomes and related multiprotein assemblies, such as bacterial flagellar motors, are functionally regulated.


Assuntos
Sistemas de Secreção Tipo III , Yersinia enterocolitica , Sistemas de Secreção Tipo III/metabolismo , Citosol , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Yersinia enterocolitica/genética , Yersinia enterocolitica/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Proteico
16.
Microbiol Spectr ; 10(6): e0205522, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36409141

RESUMO

Stringent response plays an important role in the response of Enterobacteriaceae pathogens to rapid environmental changes. It has been shown that synergistic and antagonistic actions exist between the signaling molecules (p)ppGpp and DksA in several foodborne pathogens; however, the biological function of these molecules and their interactions in Yersinia are still unclear. This study systematically investigated the role of stringent response in Yersinia enterocolitica, a typical foodborne Enterobacteriaceae pathogen, by deleting the (p)ppGpp and DksA biosynthesis genes. (p)ppGpp and DksA copositively regulated most phenotypes, such as motility, antibiotic resistance, and tolerance to oxidative stress, whereas they exhibited independent and/or divergent roles in the growth and biofilm synthesis of Y. enterocolitica. Gene expression analysis revealed that (p)ppGpp- and DksA-deficiency reduced the transcription of flagellar synthesis genes (fliC and flgD) and biofilm synthesis genes (bssS and hmsHFRS), which could potentially contribute to changes in motility and biofilm formation. These results indicate that stringent response regulators (p)ppGpp and DksA have a synergistic role and independent or even completely opposite biological functions in regulating genes and phenotypes of Y. enterocolitica. Our findings revealed the biofunctional relationships between (p)ppGpp and DksA and the underlying molecular mechanisms in the regulation of the pathogenic phenotype of Y. enterocolitica. IMPORTANCE The synergetic actions between the stringent response signaling molecules, (p)ppGpp and DksA, have been widely reported. However, recent transcriptomic and phenotypic studies have suggested that independent or even opposite actions exist between them. In this study, we demonstrated that the knockout of (p)ppGpp and DksA affects the polymorphic phenotype of Yersinia enterocolitica. Although most of the tested phenotypes, such as motility, antibiotic resistance, and tolerance to oxidative stress, were copositively regulated by (p)ppGpp and DksA, it also showed inconsistencies in biofilm formation ability as well as some independent phenotypes. This study deepens our understanding of the strategies of foodborne pathogens to survive in complex environments, so as to provide theoretical basis for the control and treatment of these microorganisms.


Assuntos
Proteínas de Bactérias , Yersinia enterocolitica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Guanosina Pentafosfato , Fenótipo , Yersinia enterocolitica/genética , Yersinia enterocolitica/metabolismo
17.
Microb Pathog ; 173(Pt A): 105877, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36371064

RESUMO

Yersinia enterocolitica (Y. enterocolitica) is a gastrointestinal pathogen that is distributed worldwide, involved in systemic, extraintestinal and invasive infections in immunocompromised patients. Establishment of antibiotic resistance in the pathogen has produced a need for new antibacterial agents. The purpose of this study was to elucidate antibacterial mechanism of protocatechualdehyde (PCA) extracted from the roots of Salvia miltiorrhiza towards Y. enterocolitica, and to investigate effects of PCA on key virulence factors associated with human infection. Present results indicated that PCA exerted its antibacterial activity against Y. enterocolitica mainly by the rapid rise of intracellular reactive oxygen species, leading to change in permeability and integrity of cell membrane, and ultimately decline of membrane potential and intracellular ATP. Furthermore, scanning electron microscopic analysis revealed that Y. enterocolitica presented gradually shrinkage in length and partial wrinkles upon PCA treatment. PCA also effectively decreased motility, biofilm formation, quorum sensing in a dose-dependent manner without affecting bacterial growth. Further, at SICs, PCA substantially suppressed the adhesion and invasion of Y. enterocolitica to HT-29 cells and the downregulation of essential virulence factor-encoding genes unveiled impaired virulence. Overall, the findings revealed the potential of PCA as an alternative antibacterial agent to combat Y. enterocolitica contamination and infections.


Assuntos
Yersiniose , Yersinia enterocolitica , Humanos , Yersinia enterocolitica/genética , Yersiniose/microbiologia , Fatores de Virulência/genética , Antibacterianos/farmacologia
18.
Res Vet Sci ; 152: 167-174, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987101

RESUMO

A survey was undertaken to determine the overall prevalence of Yersinia enterocolitica in pigs of slaughter age and to characterize the isolates in relation to bio-serotype, the presence of virulence genes, genetic diversity, and antimicrobial resistance. Moreover, possible risk factors associated with Y. enterocolitica infection during the pre-harvested and harvested phase of pig production were studied. The overall Y. enterocolitica prevalence in the pigs was 10.4% (95% confidence interval, CI = 8.5-12.3%). The most common Y. enterocolitica bio-serotype was 4/O:3, accounting for 81.6% of investigated isolates. The pathogenicity of 63 Y. enterocolitica 4/O:3 isolates, originating from all infected farms, was confirmed by the presence of both the ail and ystA virulence-associated genes and the absence of ystB gene (100%). Characterization with PFGE of 63 confirmed Y. enterocolitica 4/O:3 isolates identified five different genotypes with shared identical genetic profiles (100% similarity) within each genotype. Isolates originating from farrow-to-finish farms were only resistant to ampicillin, while resistance to nalidixic acid, tetracycline, and chloramphenicol at fattening farms was also observed. Risk factors related to Y. enterocolitica pig infection include fattening farms (odds ratio, OR = 2.3, 95% CI = 1.4-3.8, P < 0.001), a 3-6 h lairage period (OR = 1.6, 95% CI = 1.0-2.6, P = 0.035) and winter season (OR = 3.8, 95% CI = 2.0-7.4, P < 0.001). In addition to the overall characterization of Y. enterocolitica isolates, identification of the main risks associated with infection allows better application of preventive measures to reduce the occurrence and distribution of Y. enterocolitica infection.


Assuntos
Doenças dos Suínos , Yersiniose , Yersinia enterocolitica , Suínos , Animais , Yersinia enterocolitica/genética , Yersiniose/epidemiologia , Yersiniose/veterinária , Sérvia , Doenças dos Suínos/epidemiologia , Tonsila Palatina , Fatores de Risco
19.
PLoS One ; 17(7): e0268706, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35830422

RESUMO

Yersiniosis is the third most reported food-borne zoonosis in Europe. The aim of the present study was to perform the search for Yersinia enterocolitica in food samples collected from Apulia and Basilicata regions (Southern Italy) and to characterize any isolates by classical and modern analytical methods. A total of 130 samples were analyzed between July 2018 and July 2019: most of them were raw milk and dairy products made from it. Furthermore, 8 out of 130 samples were individual milk samples collected from bovines reared in a Brucella-free farm which showed false positive serological reaction for brucellosis due to the presence of pathogenic Y. enterocolitica O:9 biotype 2 in faeces. The Real Time PCR targeting the ail gene and the culture method were performed to detect pathogenic Y. enterocolitica. Isolates were subjected to API 20E (Biomerieux) and MALDI-TOF MS (Matrix Assisted Laser Desorption Ionization Time-of-Flight) for species identification. All samples were negative for the ail gene. The culture method allowed to isolate suspicious colonies from 28 samples. The API 20E system and the MALDI-TOF MS technique identified 20 Y. enterocolitica and 1 Y. intermedia in a concordant way. The remaining 7 strains were all identified as Y. enterocolitica by the API 20E system, while the MALDI-TOF MS recognized 4 Y. intermedia, 1 Y. bercovieri and 2 Y. massiliensis. Genotypic characterization of the discordant strains was performed by rMLST and it confirmed the MALDI-TOF MS' results. Only non-pathogenic Y. enterocolitica biotype 1A strains were found, although with a non-negligible prevalence (P = 0.15 with CI 95% = ± 0.06). This study indicates a poor circulation of pathogenic Y. enterocolitica in food products made and marketed in the investigated areas. However, the small number of samples, insufficient for some food categories such as meat and vegetable, does not allow to exclude the presence of pathogenic strains at all.


Assuntos
Yersiniose , Yersinia enterocolitica , Animais , Bovinos , Fezes , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Yersiniose/veterinária , Yersinia enterocolitica/genética
20.
Vet Res ; 53(1): 39, 2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35659762

RESUMO

Lawsonia intracellularis is the causative agent of proliferative enteropathy. While it harbors genes encoding the entire apparatus required for the type III secretion system (T3SS) and the expression of some of these components has been detected during experimental infection, the identification of L. intracellularis T3SS substrates (effector proteins) has been hampered. The Yersinia T3SS and yeast growth inhibition assays are two important heterologous systems used for the characterization of effector proteins. Bacterial EPIYA effectors are a distinct class of bacterial effectors defined by the presence of EPIYA or the EPIYA-related motif. When delivered into host cells via a T3SS or type IV secretion system, these effectors undergo tyrosine phosphorylation of the EPIYA motif, which enables them to manipulate host cell signaling by promiscuously interacting with multiple SH2 domain-containing proteins. A previous study showed that L. intracellularis LI0666 contains two EPIYA motifs and speculated that this protein could be a T3SS effector. In this study, we show that LI0666 is secreted by Yersinia in a T3SS-dependent manner and inhibits yeast growth. LI0666 is phosphorylated at tyrosine residues in porcine intestinal epithelial cells and in human epithelial cells. Like the archetypal EPIYA effector CagA, the EPIYA-containing region is not required for LI0666 association with yeast and mammalian cell membranes. Our results indicate that LI0666 is an authentic bacterial EPIYA effector. Identification of the tyrosine kinases that are responsible for LI0666 phosphorylation and the SH2 domain-containing host proteins that LI0666 interacts with will help to explore the molecular mechanisms of LI0666 in disease development.


Assuntos
Lawsonia (Bactéria) , Yersinia enterocolitica , Motivos de Aminoácidos , Animais , Bactérias , Proteínas de Bactérias/metabolismo , Mamíferos , Saccharomyces cerevisiae , Suínos , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Tirosina/metabolismo , Yersinia enterocolitica/genética , Yersinia enterocolitica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...